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In  this paper the linear stability of the flow between two long eccentric rotating 
circular cylinders is considered. The problem, which is of interest in lubrication 
technology, is an extension of the classical Taylor problem for concentric cylin- 
ders. The basic flow has components in the radial and azimuthal directions and 
depends on both of these co-ordinates. As a consequence the linearized stability 
equations are partial diferential equations rather than ordinary differential 
equations. Thus standard methods of stability theory are not immediately useful. 
However, there are two small parameters in the problem, namely 6, the clearance 
ratio, and e,  the eccentricity. By letting these parameters tend to zero in such a 
way that 84 is proportional to 6, a global solution to the stability problem is ob- 
tained without recourse to the concept of ‘local instability’, or ‘parallel-flow ’ 
approximation, so commonly used in boundary-layer stability theory. It is found 
that the predictions of the present theory are at  variance with what is given by a 
‘local’ theory. First, the Taylor-vortex amplitude is found to be largest a t  about 
90” downstream of the region of ‘maximum local instability ’. This result is given 
support by some experimental observations of Vohr (1968) with 6 = 0.1 and 
E = 0-475, which yield a corresponding angle of about 50”. Second, the critical 
Taylor number rises with e,  rather than initially decreasing with E as predicted by 
local stability theory using the criteria of maximum local instability. The present 
prediction of the critical Taylor number agrees well with Vohr’s experiments for 
E up to  about 0-5 when 6 = 0.01 and for e up to about 0.2 when 6 = 0-1. 

1. Introduction 
There is an interest in lubrication technology in the phenomenon of Taylor- 

vortex instability in a journal bearing. As a model we consider the flow between 
two long rotating circular cylinders (radii a and b with b > a )  when their axes are 
not coincident. In  lubrication problems the mean gap between the cylinders 
(b  -a )  is very small (b  -a  4 a) ,  and the distance between the cylinder axes (ae) 
can be a substantial fraction of that mean gap. The eccentricity parameter e 
is defined by ae = e(b - a), so that 0 < e < 1. 

Experiments on the instability of the flow between eccentric cylinders have 
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been made by a number of workers, including Cole (1957, 1965), Kamal(1966), 
Vohr (1967,1968), Castle & Mobbs (1968), Versteegen & Jankowski (1969), Coney 
& Mobbs (1970), Castle, Mobbs & Markho (1971) and P r h e  & Godet (1971). There 
are two features of the observations which we wish to explain in this paper. First, 
the critical Taylor number (for the occurrence of the instability) varies with the 
eccentricity parameter. Second, Vohr reports that, in one experiment at least 
(with E = 0.475, b - a = 0.099a), the Taylor-vortex secondary motion appeared to 
have its maximum ‘activity ’ a t  an azimuthal position some 50” downstream from 
the position of maximum gap when the inner cylinder was rotating and the outer 
was at  rest. This latter result is rather surprising at first sight, since the ‘most 
unstable’ zone (DiPrima 1963) appears to be that where the gap between the 
cylinders is greatest. The mathematical theory suggests almost immediately a 
possible explanation for the latter phenomenon, in the following way. Since the 
basic flow between the cylinders depends strongly upon the azimuthal angle, the 
linearized equations for the instability of the flow arepartial differential equations 
in the radial and azimuthal co-ordinates. Boundary conditions of no-slip are 
needed at the cylinders and the solution must be single-valued. Thus the solution 
required isa ‘ global ’ one, in that the flow field at all points must affect the stability 
characteristics and produce, in some way, the observed position of maximum 
Taylor-vortex activity. 

A similar problem has long been embedded in the literature, namely the theory 
of boundary-layer instability. There also, the basic flow depends on two co- 
ordinates, so that the true stability equations are partial differential equations. 
Moreover, in that case it has been customary to approximate the partial differen- 
tial equations for stability by an ordinary differential equation, namely the Orr- 
Sommerfleld equation with the local boundary-layer velocity profile. This is 
known as the parallel-flow approximation. To the author’s knowledge, no one 
has succeeded in developing a self-consistent theory which avoids the parallel- 
flow approximation and takes account properly of the effects on stability of the 
velocity-profile variation in the flow direction; such effects remain an enigma. 
In  our present problem, however, the requirement of single valuedness enables 
the difficulty to be overcome, so that a local theory (as implied by the parallel- 
flow approximation) can be replaced by a truly global one. We believe that in 
addition to its contribution in lubrication technology, the present analysis is an 
example from the interesting class of mathematical stability problems in which 
the basic flow varies significantly in two co-ordinates. However, the implications 
for problems of boundary-layer instability remain to be assessed. 

The procedure to be adopted in the present paper is the following. The basic flow 
is calculated in $ 2 from the equations of motion, written in a modified bipolar 
co-ordinate system (DiPrima & Stuart 1972); an expansion is made in two small 
parameters, a modified Reynolds number RLw and a parameter a, representing 
effects of surface curvature, which is small with reference to the gap between the 
cylinders. The zeroth approximation is exactly that which is given by the solution 
of the approximate ‘ Reynolds ’ equation of classical lubrication theory, while 
terms of order RM and a give first-order inertial and curvature corrections. For 
reasons which are clarified in $4, terms of higher order are not needed for the 
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purposes of the present paper. Thus, with the basic flow known to order a and 
R,, the partial differential equations of stability (against perturbations periodic 
along the axis) are formulated in $ 3. An asymptotic approximation relating a, 
RM, E and a Taylor number T is then discussed and explained in $4. This asymp- 
totic expansion results in a set of simpler (and ordinary) differential equations for 
stability, but one which still retains, as a set, a global property. Section 5 is de- 
voted to the solution of these equations by what is essentially the method of 
multiple scales. This is followed in $ 6 by a comparison of the analytical results 
with the experimental evidence of Vohr (1968) and others. A discussion of the 
present work and of its implications is given in $7 .  Finally we note that the 
reader may wish to consult a study of an MHD stability problem (Baldwin 
1972), where similar mathematical ideas are used. 

2. The basic laminar flow 
In  our study of the stability of flow between two eccentric rotating cylinders, 

when the gap between them is very small, it is not sufficiently accurate to use the 
flow field given by the solution of the Reynolds lubrication equation, and we find 
it convenient to consider the equations of two-dimensional viscous flow in the 
modified bipolar system of co-ordinates, as used by Wood (1957). The analysis has 
been carried out by DiPrima & Stuart (1972) to the accuracy needed here. 
We shall briefly outline the procedure and summarize the results in this section. 
The inner and outer cylinders have radii a and b, with linear speeds q1 and q2 
measured in the mti-clockwise direction. The centres of the cylinders axe set at 
a distance ae apart (figure 1), where 

e = €6, 6 = (b-a)/a (2.1) 

and O < € < 1 ,  (2.2) 

the latter condition ensuring that the two cylinders do not touch. I n  lubrication 
theory, E is known as the eccentricity and 6 as the clearance ratio. The r ,  8 polar 
co-ordinate system shown in figure 1 has its origin at  the axis of the inner cylinder, 
with the ray 0 = 0 passing through the axis of the outer cylinder. 

We follow Wood and use the conformal transformation 

where 

1 + 6+ €8- y 
B =  1-(1+8)y-€8y'  

The co-ordinate curves p = constant are circles and, in particular, the inner and 
outer cylinders are given respectively by p = 1 and ,8. The ray 9 = 0 coincides 
with 8 = 0. In  the limit 8 -+ 0 the p, q5 co-ordinates become identical with the 
r,  8 co-ordinates, which is an advantage of this co-ordinate system compared with 
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FIGURE 1. Geometry and co-ordinate systems. 

the usual bi-polar co-ordinate system. The Jacobian J of the transformation 
(2.3) is given by 

and the length element in two dimensions is given by 

a2 a2p2 

J J 

J = (1 + 2yp cos (p + y2p2)2/( 1 - y2)2,  

ds2 = dr2 + r2 de2 = - dp2 + - d p .  

(2.6) 

(2.7) 

Following DiPrima & Stuart (1972), we define 

p = l+a(x+*), a = p-1, (2.9) 

where up and u6 are the dimensionless components of velocity in the directions of 
p and $ increasing, respectively. Then the equation for the dimensionless axial 
vorticitv !2 is 

where 

The parameter R,,, the modified Reynolds number, is given by 

The boundary conditions are 
RAW = (41a/v) a2. 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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p denoting q2/ql. [We note that p is denoted by 7 in DiPrima & Stuart (1972).] 
In  addition the pressure, which is given by integration of the momentum equa- 
tions associated with (2.10), is required to be a single-valued function of $. This 
condition, together with (2.10), (2.11) and (2.13), can be used to obtain Y as a 
function of x and q5. 

Since we are interested in the application to lubrication, the parameter 6 of 
(2.1) is small; moreover, it can be shown from (2.4) and (2.5) that 

a(&,€) = p- i = ~ ( i - € 2 ) t { i - ~ ~ [ i - ( i - e 2 ) 3 1 ) + 0 ( 6 3 ) ,  (2.14) 

so that a is small also. As for RM, we shall see later that it, too, is to be small. Thus 
we expand Y as a power series in a and R,: 

= %o(%, $; €,p) + RMYIO(x, 4; c,p)  +6aYO,(X, 6; e;p) 

+R&Y~O(X, $; e,p)+O(a2,aRM,R&). (2.15) 

Prom this formula, together with the associated series 

J ( x ,  $; 8, a) = J o ( $ ;  €1 + aJ,(x, 4, €) + O(a2), (2.16) 

it is possible to calculate up and u$ from (2.8) to O(a) and O(R,). 
Details and results of the calculation of Yo,, Yl0, Yol, J ,  and J,, together with 

associated formulae for the pressure distribution, can be found in the paper by 
DiPrima & Stuart (1972). We note here that Yo, yields the Sommerfeld pressure 
distribution, torque and load, that a%”,, alters these quantitatively by a small 
amount, but that RM Y,, has the more significant property of rotating the load 
vector. We note also that there is ‘separation’ (with a region of reversed flow) for 

8 2 0.30278+ 0.038186, (2.17) 

a result which is not affected by Ylo. The term Y,, has been retained in (2.15) 
because our stability calculations require RiM = O(a4). However, Y,, in fact 
is proportional to e, so that R& $,, is of order ae, a term which we shall see to be 
negligible in $4.  Thus Y,, has not been calculated in detail. 

3. The equations of stability for the flow 
We now need to consider the momentum equations of viscous flow in the dimen- 

sionless co-ordinate system (p, 9, c), where 5, the axial co-ordinate, should not be 
confused with the complex number of the conformal transformation (2.3). (The 
axial distance is actually a[.) The momentum equations and continuity equation 
are 
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where 

p denotes the kinematic pressure (pressure/density), up, u$ and u5 the components 
of velocity, and t the time. 

In  the present paper it is our object to discuss the linearized theory of insta- 
bility of the basic flow given by (2.15). To this end we write 

and P denote the dimensionless basic flow and u, v, w andp' denote the dimension- 
less perturbation. A few words are perhaps needed in order to explain the scalings 
assumed above. The basic flow has components in the p and q5 directions, and the 
coefficient a€ of the p component expresses the fact, which follows from (2.8) and 
details of (2.15), that up goes to zero with a and with E. The velocity scale +(ql + q2) 
is chosen for convenience. Now consider the perturbation quantities. Three- 
dimensional perturbations of Taylor-vortex type may, in general, depend upon 
x, q5,c and t .  Moreover, it is known from studies of the nonlinear problem in the 
concentric case that appropriate velocity scales are v/ad radially and axially, and 
q1 - q2 azimuthally (Stuart 1958; Davey 1962); corresponding scales here are 
v/aa and q1 - q2 as shown. The scales of the kinematic pressure follow from lubri- 
cation theory (DiPrima I% Stuart 1972) and from a knowledge of the stability 
problem in the concentric case. 

Linear forms of (3.1)-(3.4) follow if (3.5)-(3.8) are substituted and terms 
quadratic in u, v, w are ignored. However, before giving those equations we first 
use the fact that Taylor vortices are periodic along the axis when the cylinders are 
very long, with a wavelength comparable with the gap between the cylinders 
(Vohr 1967, 1968). Thus we assume that 

(3.9) 
u = eu7u1(x, q5) COB A t ,  v = e'7v1(x, $) GOS A t ,  
w = eu7w1(x, $) sin A t ,  pf = e'Tpl(x, 4) cos A& 

where we have defined 
6 = at, t = (a2a2/v) 7. (3.10) 

Clearly a and h represent a non-dimensional growth rate and wavenumber, 
respectively. 
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The following linearized stability equations then result: 

(3.11) 

(3.13) 

In  these equations we have used the following definitions: 

(3.15) 

(3.16) 

R, = + (1 +/A) R M  = +(I +,u) ( Q ~ u / Y )  a', (3.17) 

T = (al a/v)2 &3 ( 1 - p), (3.18) 

c = W-/A) / (1  +,U)l* (3.19) 

The boundary conditions on (3.11)-(3.14) are that ul, v1 and w1 are zero at 
x = +_ 8, and that the solution has period 277 in q5. The system of partial differential 
equations (3.11)-(3.14) with these conditions defines an eigenvalue problem 

F(a, T ,  E ,  C, a, A )  = 0. (3.20) 

The parameter R, does not appear in (3.20) since R, can be expressed in terms 
of T and c. The flow is unstable if there exist solutions of (3.20) with Re a > 0. 
For given values of E ,  c and cc the critical value of T is determined as the minimum 
value of T for all positive h such that Re a = 0. For the case e = 0 all calculations 
indicate that the condition Re a = 0 occurs with Q = 0, and we shall assume that 
the critical conditions are determined by a = 0 for E + 0. This is consistent with 
the experimental observations that the instability leads to a steady, rather than 
oscillatory, secondary flow. It is abundantly clear that (3.11)-(3.14) present a 
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formidable obstacle, at least in the general case. I n  the next section we seek a 
means by which they may be simplified, but in such a way that their essential 
features are retained. 

4. An asymptotic approximation to the stability problem 
The partial differential equations that we wish to solve, namely (3.11)-(3.14), 

have coefficients which depend on x and 4 through U ,  V ,  J and p. If, however, 
e = 0,  then U ,  V and J do not depend on 4, because the cylinders are then con- 
centric. Then a solution can be sought with 8/84  E 0 and will describe the usual 
axisymmetric Taylor-vortex instability and resulting secondary flow. Our object 
now is to obtain a generalized perturbation which yields a solution distinct from 
that of the concentric case, a t  least when E is small; no attempt is made here to 
discuss (3.11)-(3.14) in their full generality. 

For purposes of explanation only of the asymptotic method to be used, the 
writers have found it helpful to consider the model equation 

(DZ-AZ) ( D ~ - A ~ - c T - R ,  V,(X) [~ /~~] )ZV+-+~T[V , , (X)  +EV~(X)COS$J]V = 0, (4.1) 

together with appropriate homogeneous boundary conditions, where 

D = alax (4.2) 

and V,(x) and V,(x) are given. This yields an eigenvalue problem for T as a function 
of A, CT, e and B,. Equation (4.1) contains the essential features of (3.11)-(3.14) 
in that it models (i) how the basic flow depends on 4 and (ii) how differentiation 
with respect to q5 enters into the problem. Indeed it is clear that, if B = 0 and 
a/+ = 0, then (4.1) has the form of the classical stability equation for the case 
of a small gap. The essential additions we have made are to allow the basic 
velocity distribution to depend upon 4, and to allow for a q5 derivative. 

Now, if we were to use the ‘parallel-flow’ assumption, as commonly used in 
boundary-layer stability, the expression [V,(x) + eV,(x) cos 41 would be regarded 
as a function of x only, with 4 as a parameter, and would be disregarded. 
Then the eigenvalue T of the homogeneous differential system would, implicitly, 
depend upon 4. Calculations of this kind for the case of eccentric cylinders have 
been made by DiPrima (1963) and Ritchie (1968) and give, essentially, a ‘local’ 
criterion for instability, local in the sense of having a value for T for each value 
of 6. For Taylor-vortex instability such analyses really parallel closely Gortler’s 
(1940) treatment of the centrifugal instability of a boundary layer on a concave 
wall, since he, too, used the parallel-flow (or local) approximation. Such a pro- 
cedure is not entirely satisfactory, and we would like to obtain for the global 
problem an eigenvalue T which is independent of q5. 

The mathematical difficulty is that we must solve the partial differential equa- 
tions in such a way as to account for the 4 variation. Since R, is smallin lubrication 
theory, it appears that the term BaT$(x) a/@ may be negligible; however, to 
neglect it brings in the parallel-flow approximation mentioned above and has the 
implication that T is a function of 4. A way out of this difficulty is to allow 
to take an appropriate magnitude, relative to the 4 dependence imposed by the 
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term E cos 4. In  the actual problem we certainly have a as a small parameter, 
since this is a concomitant of lubrication theory. Now consider the parameter 
$2,. Equations (3.17) and (3.18) indicate that 

R, E (Ta/Bc)$. (4-3) 

In  the concentric problem T is the stability parameter and c is a constant for 
given p. I f  we keep T fixed, or allow it to vary onlyin alirnited range, then R, is 
proportional to a*. Then, a glance a t  (4.1) indicates that the response of the term 
proportional to 8/84 is proportional to the 4 dependence imposed by E cos 4 if 

R, - a* N E .  (4.4) 

Thus we set a* = k€(2C)t, (4.5) 

where k is a fixed parameter and ( 2 ~ ) s  is introduced for convenience. Now, using 
(4.3) and (4.5) we could develop a solution of (4.1) by expanding w(x, q5), T and h 
in powers of E .  This would give a solution for both E and a small, but subject to 
the over-riding relation (4.5). Instead of pursuing the model equation (4.1), 
which is of no physical interest, we now return to the true stability equations for 
our problem, but still make use of the mathematical idea explained above. 

We now use (4.3) and (4.5) in (3.11)-(3.14) and then expand the perturbation 
velocity and pressure field as follows: 

u1 = u10 (x, 9) + EUll(X, 9) + f%,(x, 9) + * * .  3 (4.6) 

'u1 = 'ulO(X, 9) + e'u11(x, 9) + e2'u12(x, 9) + * * * 7 (4.7) 

w1 = WlO(X, 9) + EWll(X, 9) + E2W12(X, $) + * * * 9 (4.8) 

P1 = PlO(X, 9) +EPll(x, 9) + e21712(x, 9) + - * -  . (4.9) 

Moreover, we let T = T,+BT~+E~T,+... . (4.10) 

For the calculation of the critical value of T at  which instability may occur, it  
can be shown that the variation of h from its 'critical' value at E = 0 does not 
affect T through terms of the order of e2 (a related argument for another problem 
is given by Chandrasekhar 1961, p. 313). Since we take our calculations of T 
only to order e2 we shall keep h fixed. The functions in (4.6)-(4.9) depend in various 
ways upon g, A, k, c, To, T,, T, . . . . 

In association with these expansions we must recognize that U and V of (3.5) 
and (3.6) depend upon a, R, and E ,  so withuse of (3.17), (4.3) and ( 4 4 ,  they too 
can be expanded in powers of E .  In  particular we need R, = 2T4 ks/(l +p) ;  we 
then have 

T' = V,(x) + &V1(x, 9) + @[&,(x) + kT*T/',,(x, 4 )  + k 2 c 2 ~ , ( x ) ]  + O(e3),  (4.11) 

u = U,(X, 9) +O(E). (4.12) 

In  these formulae V,, V,, V,, and U, come from Yo,, while V,, comes from Yl,, and V,, 
from Yolof(2.15).Asnotedat theend ofS2, the term R&YZOin (2.15) is of O(ae),  

26 F L M  54 
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which is now seen to be equivalent to O(E3) and therefore negligible to the order 
of (4.11). Moreover, it can be shown from DiPrima & Stuart (1972) that 

v, = 1-cx, (4.13) 
V, = 6(x2 - &) cos q5, (4.14) 

(4.15) 

(4.16) 
22 - 41 (4.17) 

(4.18) 

It may be noted that the approximation (4.11) preserves the property of basic 
flow separation provided that E 2 0.28, a result which should be compared 
with (2.17). These formulae are sufficient to take the stability calculations up to 
order e2. 

Using (4.2)-(4.18) we obtain sets of simplified differential equations for the 
functions arising in (4.6)-(4.9), and these must be solved subject to no-slip 
conditions and the requirement that the solution be single-valued in q5. The solu- 
tions are given in Q 5. 

v,, = 3(x2 - t),  
V,, = (9- &) [i( i - &c2) (& - 9 )  - Qcx(& - x2) ] sin q5, 

U, = 2(x2 - 4) (x - &c) sin q5. 

5. Solution of the simplified equations 
Order eo 

By elimination of plo and wl0 we have 

h2TOV,W,, = NMU,,, - Ul0 = NWlO, 
where M E  (P-h2), N EZ (D2-A'-c), 

with the boundary conditions 

ul0 = vl0 = Du,, = 0 a t  x = f 4. (5.2) 
This differential system yields an eigenrelation between A, To and u. For example, 
for c = 2 (q2 = 0, outer cylinder at  rest), the critical Taylor number ( T )  is about 
1694-95 at h = 3.13, and occurs (it is believed) with c real and therefore equal to 
zero (Davey 1962). 

We write the solution of (5.1) and (5.2) in the form 

UlO = - B(q5)fo(x), 2110 = B(q5) go(4, (5.3) 

where fo and go together provide the eigenfunction of the system of ordinary 
differential equations 

M y o  + h2ToV,g, - cMfo  = 0, (5.4) 

fo - Mg, + ~ 9 0  = 0, 

f o  = Df, = go = 0 at x = & 4. 

However, since q5 is a parameter as far as (5.4)-(5.6) are concerned, we can and 
must allow the arbitrary multiplicative constant to be a function of q5. The deter- 
mination of B(q5) requires the consideration of higher order terms in the expan- 
sion. 
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Adjoint equation: order €0 

Later we shall need to use the differential system adjoint to the system 
(5.4)-(5.6). This is given by 

(5.7) 

(5.8) 

fO+ = Dfof = g$ = 0 a t  x = & 6.  (5.9) 

The eigenvalues To, A, cr andc are identical to those of (5.4)-(5.6) but the adjoint 
eigenfunction pair (f:, go+) is different from ( f o ,  go),  as the form of the equations 
indicates. 

Order E 

By elimination ofp,, andw,,, use of the properties of the system to;O(eO), and with 
the definition 

u11 = -u11, (5.10) 
we obtain 

MY$ +gt - UMf$ = 0, 

h2To'CT, fof - Mg$ + cgof = 0, 

- 

M 2 U 1 1  + h2ToVo~11 - u M U ~ ~  - = B(#) cos # F111(x) 
dB 

+~T~~F11~(~)+~1B(#).F113(~), (5.11) 

(5.12) 

(5.13) 

(5.14) 

.F112(4 = h',Mfo, F113(x) = -h2Ggo, (5.15), (5.16) 

- dB 
u11- M V l l +  w 1  = B(#) cos # C*'lll(X) + m- C*'ll2(4, 

d# 
- ull = Dull = vll = 0 at 2 = 5 Q. 

Here F111(x) = - 6h2T0(~2 - 1) go + 4(M - Qu) D2f,, 

G1n(x) = [ (12/c)~+ 11fo-2D2go, G112(~) = -Kgo. (5.17), (5.18) 

OncethesystemtoO(EO)hasbeensolved, theright-handsidesof (5.1l)and(5.12) 
are known, except for the value of T,, as yet unknown, and for the function B($), 
as yet neither assigned nor determined. The two operators on the left-hand sides 
of (5.11) and (5.12) have the same forms as those in (5.4) and (5 .5) .  Moreover, 
differentials with respect to $ do not occur in those operators; consequently, q5 
may be regarded as a parameter as far as (5.1 1) and (5.12) are concerned. 

It is at this point that the adjoint function pair (fz, g t  ) comes into its own. It is 
well known that, since the homogeneous system (5.11)-(5.13) has a non-trivial 
solution, the non-homogeneous problem will have a solution only if an appropriate 
orthogonality condition involving the solution of the adjoint problem is satisfied. 
In  this problem the orthogonality condition requires that when we multiply the 
right-hand sides of (5.11) and (5.12) by f$ and g$ respectively, add and integrate 
over ( -  4, 6 )  the result must be zero. This gives a relation between B(#), &.El&!#, 
cos 4, k and T,, namely 

26-2 
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This of course, is a first-order linear differential equation for B($). The coefficients 
can be evaluated in terms of the O(eo) solution and of the adjoint solution. 

Upon solving (5.19) we find immediately that, if B($) is to be single-valued, then 

Tl = 0. (5.20) 

The solution for B($) then follows: 

B(4)  = BO(4 exp rrm) (sin 4 - 1)1, (5.21) 
where 

(ft[ - 6h2To(~2-2) go + 4(M- &) D2fo] +go' - + I f o  - 2D2go dx r =  [(': ) I) 
/ ~ + r f ~ w o - 9 l ? ~ o l v , d ~  

(5.22) 

and Bo(k) is a constant which cannot be determined within the framework of a 
linear theory and will, of course, depend upon all the parameters of the problem; 
the dependence on k: is shown explicitly. 

Withuse of (5.20) and (5.21) it then follows that (5.11) and (5.12) can be solved 
in the form 

(5.23) 

(5.24) 

- 
- u11 = u11 = a$) cos $f1(4 + Bl($)fO(4, 

v11 = B($) cos 4 g1(4 + Bl($) go(4, 

where fl and g1 satisfy the system of ordinary differential equations 

M2f,+h2TOgl-aMfl = -6h2To(x2-~)go+4(M-&) D2f,+r&Hf0, (5.25) 

f l - ~ g l + a g l  = ( ~ + i ) ~ o - 2 0 2 g o - r ~ g o ,  (5.26) 

fl = Ofl = g, = 0 a t  x = & 4. (5.27) 

Formula (5.22) ensures that this differential system has a solution. Of course the 
solution of (5.25)-(5.27) is determined only up to an additive multiple of the eigen- 
function of the corresponding homogeneous system, and this is reflected by the 
inclusion of the terms Bl($)fo(x) and Ill($) go@) in (5.23) and (5.24), respectively. 
To determine the function Bl($) requires consideration of the next higher term in 
the expansion. 

Order e2 

By elimination of p12 and w12 and use of certain properties of the systems to order 
€0 and e,  together with the definition 

- 
u12 = -u12, 

we obtain 
(5.28) 
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- dB 
u12 - Mv12 + gv12 = BlW COB 9 Glll(4 + a -@I GllZ(4 

+B($) G123(x) f lcZB(#) G124(x) + B($) OoS '9 G125(x) f kT8B(#) sin 9 G12l$(x). 

(5.30) 

(5.30a) 

InIthese equations certain functions are given by (5.13)-(5.17), while the others 
are as follows: 

The boundary conditions are 
- 
u12 = LIEl2 = V12 = 0 at x = ? *. 

P123(x) = ir[6(x2 - $) Mfo - V,(3D2 - h2)fo - 12f0 + 2cDf0] 
- ( 3 ~ 2  - P - +g) ~y~ - 3h2To (x2 - t )  go - r c m g ,  

+ 2 ( ~  - 4 ~ )  ~ " f i  - 3h2q(X2 - 2 )  gl + +rqof1, (5.31) 

(5.32) FlW(2) = - 4c(M - &g) Df, + 2h2T0c(x + Q) 6 9 ,  - h2Toc2V,,go, 

F 1 2 5 ( ~ )  = ir[6(x2 - 4) Mfo - V,( 30' - h2)fo - 12fo + ZcDfo] 

- ( 3 p - h 2 - 1  2g) ~y~ - r c m g 0  + 2 ( ~  - oy1 
+ +rv,zfl - 3h2To(X2 - 4) g,, 

+ V , ( P  + h2) fo + 12f0 + 12xDf0 

- P T 0 ( X 2  - $) [+( 1 - &c") (& - 9) - %cx(& - x"] go 

- 3c(M - gg) Dg, - ?Qwfl, 

(5.33) 
.F;,~(z) = 2(x2-$) ( x - ~ c ) M D ~ ~ + ( ~ x ~ - c x - ~ ) M ~ ~  

(5.34) 
F12,(4 = - - m 3 9 0 Y  (5.35) 

G123(s) = - ifo + w 2 g o  + w- cx - ~ 2 -  a11 go + ifl+ (6x/c)f1 - ml - i rvogl, 
(5.36) 

GI24 = 'f0 + 2cDg07 (5.37) 
a125(x) = - (6x/c) fo + +02go + W[l- cx - 6(x2 - a)] go + ifl 

+ (6x14 f1- D"1- + m 1 >  

G1,6(x) = (1/c)fo[i(l-&c2) (-4x3+~x)] + f 0 ( x 4 - & c 2 + ~ )  2 4 0  

(5.38) 

- 2(x2 - 4) (x - 4c) Dgo + 6g0(x2 - &) + V,g1. (5.39) 

Again, in order for the system (5.29)-(5.30a) to have a solution we require 
thaty when we multiply the right-hand sides of (5.29) and (5.30) by f,j- and go', 
respectively, add and integrate over ( - 4, +), the result must be zero. Thus we 
obtain the following fist-order linear differential equation for $Il(#) : 
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The integral coefficients are known from properties of the functions of order eo 
and e. 

The constant T2 is determined by the requirement that the solution of (5.40) 
be single-valued in 4. This gives 

(f; ’123 + giGlZ3) + kz/:+ (fof ’124 + G124) 

T2 z= - (5.41) 

The function Ill($) is then given by 

where 

(5.42) 

(5.43) 

(5.44) 

An integration constant inside the square brackets of (5.42) has been set equal to 
zero, since to retain it would merely involve a redefinition of the amplitude B, 
of (5.21), as (5.3), (5.23) and (5.24) indicate. In  solving for (fl,gl) a convention is 
needed as to the ‘amount ’ of (fo, go) which is included in (fl, gl). However, a calcula- 
tion shows that wll and wll are independent of the convention selected, as is the 
value of T,. 

We are now able to give the form of the velocity field including terms up to 
order e, and the critical Taylor number to order @. To order e the velocity field 
is given by 

(5.45) 

(5.46) 

- c r  ~ ( 9 )  cos 9 go]. (5.47) 

u1 = -B(9) r f o ( 4  + C f l ( 4  cos dl - CB1(9)fO@), 

Wl = a$) [ s o ( 4  +%(4 cos 41 + eB,(9) g o ( 4  

w1 = h-lB(4)Dfo +eA-l[B($) cos 9Dfl+ (BI(9) - B($) cos 9) %I 

Using (5.24) we may re-write these formulae as 

u1 = - B(9) {fo(x) + C [ f l  cos 9 +fOPl cos 9 + ( W k T t )  sin 29)1), (5.48) 

w1 = B(9) {%(4 + a 7 1  cos $ + go(Y1 cos 9 + ( r , / 2 k m  sin 29)1)> (5.49) 

+ ~ f ,  (r2/2k@) sin 29  - Grg, cOs $11. (5.50) 

~1 = h-l B(#){Dfo(x) + ~ [ D f l  cos 9 + Dfo( rl- 1) cos $ 

The Taylor number is given by 

T = To + E’(T,~ + k2TZ2) (5.51) 

to order e2, where (T2,+k2T2,) represents (5.41) and h , k , c  and r are fixed. 
Numerical details of the above formulae are given in the next section and com- 
pared with experiment. 
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With knowledge of B,($) we are in a position to solve (5.29) and (5.30) for 
Ti,, and v12, but the solution can only be determined up to an additive multiple 
of the eigenfunction (fo, go) in the form (B2(q5)fO(x), B,($) go(x)). In  order to deter- 
mine B2($) it is necessary to go to terms of 0(s3). Thus we cannot yet calculate the 
form of the O(e2) term in the velocity field, since we have not discussed the 
determination of B2($). 

6. Detailed results and comparison with experiment 
Detailed computations, based on the analysis of the previous section, have 

generously been performed for the authors by Dr P. M. Eagles of the City Uni- 
versity, London. The results are all for the case when the outer cylinder is at rest 
(q, = 0 ) ,  and for neutral stability with CT = 0. For CT = 0, c = 2 and e = 0 the 
critical values of T and h are taken to be 

To = 1695, h = 3.127. (6.1) 

The calculations were performed by a Runge-Kutta integration routine, using 
20 steps and, as a check 30 or 40 steps. Where possible comparison was made 
with previous work (Davey 1962; Davey, DiPrima & Stuart 1968; Eagles 1971); 
in other cases independent checks were made. Accuracy is to four significant 
figures. The main results follow from the solution of (5.4)-(5.6) for the basic 
eigenfunction pair ( fo, go) with h and To as in (6.1), from (5.7)-(5.9) for the adjoint 
function pair (ft, go+), from (5.22) for the fundamental constant I?, from (5.25)- 
(5.27) for the function pair (f1,gl), and from (5.41)-(5.44) for the important 
constants T2,, T2,, r1 and I?,. The values of several of tbse quantities are as 
follows : 

r = 23-09, T,, = -635.7, T,, = 7877, (6.21, (q, (6.4) 

~ ~ ~ [ ~ ~ ~ l 1 2 + g ~ G l 1 2 ] d ~  = ( -  3,799) (6.5) 

1: [f; Ii;26 + gO+ G,,,] dz = ( - 9-6 10) lo", (6.7) 

where functions are normalized so that Dgof = D3f, = 1 , x = - Q, which implies 
that go = (1,71814) 10-4, x = 0 and Dzf,f = ( - 1.30764) 10-2, x = - Q. Thus, from 
(5.43), (5.44) and (6.5)-(6.7) we have 

rl = 2-530, r2 = 18-16. (6.8), (6.9) 

A matter of some importance is that the parameter k, defined by ( 4 4 ,  and 
which appears in a rather simple way in the formulae (5.48)-(5.51), is left free. 
The implications of varying this parameter will be discussed later. 
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Taylor number 

We note that (5.51), together with (6.3) and (6.4), yields 

T = 1695 + $( - 635.7 + 7877k'). (6.10) 

We emphasize that T is given by 
T = (41a/v)2a3 (6.11) 

for ,u = 0 (c = 2), where a is related to 6 and E by (2.14). However, this Taylor 
number contains an implicit dependence on E through a. We eliminate this by 
defining the more conventional TayIor number 

T, = (41a/v)263. 
Using (2.14), we obtain 

(6.12) 

T = T,( 1 - s2)Q {l - &?[l- (1 - E')*])~. (6.13) 

Substituting this expression for T in (6.10), noting that k2s2 = $a from (4.5), and 
expanding for E and 6 small and neglecting higher order terms, we obtain the 
following from (6.10): 

T, = 1695( 1 + 1.1626) + 1907~' = 1695( 1 + 1.1626) (1 + 1.125~') + O(6e2, S', E~). 
(6.14) 

Since k has been eliminated from (6.14) we can regard it as a formula which 
gives the dependence of T, on the two small parameters 6 and E', which may now 
vary independently. The term of order 6 comes from the term of O(e2k2) in (6.10) ; 
in fact it has nothing to do with eccentricity, but represents the change of the 
critical value of T, in (6.12), due to the small curvature effect. A comparison for 
E = 0 by interpolation from the work of Roberts (1965), who calculated stability 
propertiesincluding critical Taylor numbers for a variety of valuesof 6, shows that 
the coefficient 1.162 of (6.14) is about 1.167 in Roberts' calculations. (A similar 
comparison with Taylor's (1923) paper gives 1-14, indicating the great accuracy 
of that classical work of 50 years ago.) 

The true effect of eccentricity in (6.14) is represented by the term 1.125~'; 
this arises from two sources, one being the negative term in (6.10) and the other 
the effect of the factor (I  -e2)% in (6.13). As can be seen, the latter is much the 
more important contribution, since it changes the sign of the explicit €2 term in 
going from (6.10) to (6.14). 

We are now in a position to compare our calculations with the experimental 
results, particularly with those of Vohr (1968) for 6 = 0-0104, because this is the 
smallest value of 6 available; however reference will be made also to results for 
larger values of 6. Vohr plots the experimental values of the square root of the 
Taylor number, T, = T,( 1 + is)-', which we give as 

Tt = 41*17( 1 + 0.3316) ( I  + 0 . 5 6 2 5 ~ ~ )  + 0(6@, 6', e4), (6.15) 

and shows that T, rises with E ,  a feature shown also by experiments of Cole 
(1965) and Kamal(l966). Figure 2 shows a comparison of (6.15) with the measure- 
ments for 6 = 0.0104. It can be seen that the agreement is excellent for values of 
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FIGURE 2. Comparison of theory with experimental measurements of Vohr (1968) 
for 6 = 0.0104. - , theory; 0, experiment. 
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FIGURE 3. Comparison of theory with experimental measurements. - , theory. 
Experiments: , Vohr (1968) for 6 = 0.099 using torque measurements; x , Kamal(lQ66) 
for 6 = 0.0904 using visual observation with aluminium powder. 

E up to about 0.5. Presumably the term of order s4 is needed in (6.10), (6.14) and 
(6.15) in order to account for the experimental value of the critical Taylor 
number at values of E larger than 0.5. 

For S = 0.099 our result is shown in figure 3, together with the measurements 
of Vohr. Agreement in this case is good for values of E up to about 0.2 only, in- 
dicating perhaps that the O ( S ) ~  effect in (6.15) is much greater in this case. Also 
shown in figure 3 are the observations of Kamal for 6 = 0.0904. (The effects of 



410 

5.0 

4.0 

3 3.0 
It 

R. C .  DiPrima and J .  T. Stuart 

- 

- 

- 

A 

w 
v c 

2.0 
h” 

X 
A 

Y 0 

A 
X 0 

f c o  
- 

A 
X X  

Y 

A x  

0 1  I I I I 
0 0-2 0.4 0.6 0.8 

E 

FIGTJRE 4. Comparison of theory with experimental measurements of Castle & Mobbs 
(1968) for 6 = 0.112 (torque) and 6 = 0.0962 (dye or aluminium). - , theory. Ex- 
periment : 0, first instability (dye); A, second instability (aluminium); x , secondinstability 
(torque). 

the small difference in 6, and of the fact that Kamal’s Taylor number is Ti, are 
not large.) As can be seen these observations agree much better with our theory. 
However, it should be noted that Kamal used visual observation while Vohr 
used torque measurements in determining the critical speed. Dr Vohr has pointed 
out to us that for his experimental work he believed that torque measurements 
gave a more accurate measurement of the critical speed than visual observations 
and that the latter tended to give lower values. 

Castle & Mobbs (1968) made measurements for S = 0.1 12 (torque apparatus) 
and for S = 0-0962 (visualization by dye or aluminium particles), and their re- 
sults are shown in figure 4. The solid curve represents Tu/Tu(~ = 0 )  = 1 + 1 . 1 2 5 ~ ~ ~  
derivable from (6.14); it is independent of 6 in this approximation. The results of 
Castle & Mobbs obtained from torque measurements and from use of aluminium 
particles agree with Vohr’s, but they observed also a lower incipient mode of 
instability by means of dye. This dip below To, which has been observed also by 
Versteegen & Jankowski (1969) and Frene & Godet (1971),agrees with DiPrima’s 
(1963) local theory, and it seems possible therefore that this ‘incipient’ mode 
may be a manifestation of local instabilities. Alternatively i t  may represent the 
occurrence of another mode which cannot be explained by the present global 
theory. 
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T h e  position of maximum vortex activity 
Vohr’s visual observations of the flow between eccentric cylinders were made 
with the larger value of 6, namely 6 = 0.099. They are stated in terms of the angle, 
denoted here by 0, measured around the outer cylinder (in the direction of rota- 
tion) from the place of maximum gap. In  order to compare his observations with 
our theory we need first to relate 0 to the angle $ used in the present work, and 
originally introduced by the conformal transformation (2.13). Actually there are 
three angles involved, namely $ of the bi-polar co-ordinate system, the angle 8 
for polar co-ordinates centred on the inner cylinder and the angle 0 for polar 
co-ordinates centred on the outer cylinder. The relationships on the outer 
cylinders can be established as follows. 

The outer cylinder (see figure 1) is defined by 

r2 - 2rae cos 8 + a3e2 - b2 = 0. (6.16) 

Also, on the outer cylinder (p  = p) the length element is given by 

The latter part of this statement follows from (6.16) with J given by (2.33)- 
(2.35). Using the Sommerfeld transformation (of lubrication theory for a journal 
bearing), namely 

cos$-E 
1 - 6 cos q5’ 

cosx = -- (6.18) 

we can integrate (6.17) to obtain 

(6.19) 

to order a, where s and 0 are measured from $ = 8 = x = 0. Solving for 0 and 
0 and using (2.14), we obtain 

8 = ~-&~6sinx+O(S2) ,  (6.20) 

0 = X+@€sinX+O(62). (6.21) 

Comparative values of Cp, 8, x and 0, approximated for E and 6 small, are given 
in table 1. A further useful fact, which is not difficult to check, is that @/dO and 
d;6/dCp are zero together. 

Now, if terms of order E are ignored, formulae (6.48)-(5.50) show that the 
linearized theory solution is proportional to B($) .  From (5.21) this clearly has its 
maximum at Cp = &r, which, according to table 1 with 6 terms ignored, corre- 
sponds to 0 = &re This result, which is valid when 6 and E tend to zero and are 
linked by (2.14) and (4.5)’ is very significant since it shows the global, or non-local, 
property of this stability problem. The maximum vortex activity lies not at 
0 = 0, where the instability will first occur according to a local theory, but rather 
at a position displaced by &r around the annulus, in the direction of rotation. 



412 R. C. DiPrima and J. T. Stuart 

In  Vohr’s (1968) experiment with 6 = 0.099 and e = 0-475, he observed that 
“the vortices were. . .most strongly developed. . .50“[0] downstream of maxi- 
mum clearance”. It is of interest to attempt to calculate an O(e) correction to 
our asymptotic result 0 = in, to see if the position of maximum activity is 
displaced towards smaller angles. To this end we need to use the rather compli- 
cated formulae (5.48)-(5.50). 

It is not clear just what property of the flow field contributes most to Vohr’s 
statement. However, one measure of the vortex activity which is easily calculated 
and which may correspond with observation is the axial velocity in the neighbour- 
hood of the outer cylinder. Since w1 = 0 on the outer cylinder it is clear from a 
Taylor series expansion that near the outer wall the axial velocity is proportional 
to the radial gradient awllax at x = Q. A calculation shows that this quantity 
has its maximum at 

Dr Eagles’s computations show that at the outer cylinder 

D2f, = - ( l * O O )  D”fi = (l.OO)lO-l, Dgo = (-4*47)10-‘. (6.23) 

Thus for c = 2 we obtain 
& = e(0.577k + 0.786), (6.24) 

while the corresponding value of 0 is 

0 = Qn+s(0*214-0*577k) +O(&). (6.25) 

This is less than in if k > 0.37. 
The value of k is determined by the choice of 6 and E from (4.5). For Vohr’s 

experiments with 6 = 0-099 and e = 0.475 we find that k = 0.33. For this value 
of k, formula (6.25) indicates a displacement from 90° away from the observed 
50”. In  making our comparison with Vohr’s observations of the region of maxi- 
mum vortex strength, we must note that his Sand e, but especially e, may be too 
large for the asymptotic theory to  be completely correct. Moreover, we note that 
the observation of about 50” was certainly qualitative and ‘subjective’, as Dr 
Vohr has explained to us. Thus more work, both experimental and theoretical, 
is required in order to establish the effects of the magnitudes of 6 and 8 on the 
position of maximum vortex activity. It is possible also that finite amplitude 
effects may be relevant. 

One further matter ist hat for e = 0.475 the basic flow certainly has a zone 
of separation. Dr Vohr has also indicated that the axial line of reattachment 
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of the basic flow was rather close to the 50’ line, and may have affected the 
observations. From the theoretical point of view we are encouraged about the 
accuracy of basic flow given by (4.11)-(4.18) by the fact that formula (4.11) 
for V gives the possibility of separation of the basic flow only if E > 0.28, a 
value which is close to the result (2.17) obtained without the assumption of small 
E .  Thus formula (4.11) is likely to be a reasonable approximation up to the value 
0-5 for s, and is therefore not in itself a source of substantial error. However, it  
must be admitted that, although our theoretical stability method effectively 
ignores the occurrence of separation by use of the expansion for small E ,  the 
phenomenon has to be faced if comparisons are made with observations for e 
greater than about 0.3. Clearly, further work is needed on this aspect. 

7. Discussion 
I n  this paper we have analysed the stability of the basic flow between rotating 

eccentric cylinders. The basic velocity has components in the radial and azi- 
muthal directions, but more seriously depends upon the independent co-ordinates 
p and $I in these directions, respectively. Thus the straightforward formulation 
of a linear stability problem leads to partid differential equations rather than 
ordinary differential equations. In  our analysis we have two small parameters; 
6 (or a), the clearance ratio, and E ,  the eccentricity. As is discussed in 0 4, we obtain 
a tractable problem by considering an appropriate limit as 6 + 0 and 8 + 0 for 
fixed T, in such a way that we take account properly of the q5 variation. Precisely, 
we assume a+ = ks(2c)4, and thus we obtain an asymptotic result in the limit 
a+ 0, E +  0, with kand T fixed. 

The global result (5.21), for the amplitude B as a function of q5, arises from an 
attempt to account rationally for the effect of the variation of the basic flow with 
the co-ordinate in the flow direction. Of especial interest is the fact that (5.21) is 
completely unlike any result derivable from a local (or ‘parallel-flow ’) theory. 
Moreover, the velocity field (5.48)-(5.50) is far more complex than that of the 
concentric case. However, having taken a first limit s + 0, k fixed according to  
(4.5), we may now consider the effect of k variations. 

Two cases are of interest. The first case is k + 00, which implies that E is very 
much smaller than 64 [see (2.14) and (4.5)]. Then we retrieve the concentric case 

B = B,(0O) (7.1) 

from (5.21), with (5.48)-(5.50) giving the velocity field for the concentric case. 
In  this limit the formula (6.25) for the position of the maximum is 

0 = +T+O(CX/~C)*+O(E), 

since ks = (a/2c)4. However, since the velocity field becomes uniform the maxi- 
mum has no significance. The second case is k + 0, which implies that 84 is very 
much smaller than s ;  then we find from (5.21) that 

B+ 0 for q5 $: +rr, 

B + B,,(O) for q5 = in, 
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provided we assume that B, tends to a constant as k + 0. The result (7.2), in 
association with (5.48)-(5.50), is certainly not one derivable from local considera- 
tions. [We note, however, that only by consideration of the nonlinear problem 
could we justify the assumption above that B,(O) is finite; possibilities other than 
(7.2) may arise and remain to be assessed. Moreover, since (5.48)-(5.50) contain 
terms O(k-l) ,  it may be necessary to require that B, is O ( k )  as k + 0; but again, 
this needs consideration of the nonlinear terms.] 

In  the present work it is the property of periodicity in the azimuthal co-ordinate 
which has enabled us to derive these interesting resultsfor a non-parallel problem. 
While we do not have the condition of periodicity in boundary-layer instability, 
the implication is still strong that there may be some similar, as yet undetected, 
non-local aspects of behaviour in that problem. 

One further remark about (5.21) is desirable. Rosenblat & Herbert (1970) have 
studied the stability of time-dependent basic flows (in thermal convention) 
using the Galerkin method. Their work and that of this paper are quite indepen- 
dent, but for their problem the model equation (4.1) is far more relevant 
physically; for if $ is replaced by wt and R,&(x) a/a$ by a/at, we have essentially 
their stability equation for the low frequency case w -+ 0. Also, as can be found 
by recasting their analysis, a result like (5.21) can be derived. We believe, how- 
ever, that the present methods have advantages for the algebraically complex 
stability problem of (3.1 1)-(3.14). 

A final theoretical point that we wish to note is that the present work may be 
regarded as forming a basis for a nonlinear analysis (analogous to those of Stuart 
(1958) and Davey (1962)), by which one might calculate the torque and load on a 
journal bearing, when Taylor vortices are present. However, much more work is 
needed before any useful remarks can be made on this aspect. 
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